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Abstract

Introduction: Acute cor pulmonale (ACP) and patent foramen ovale (PFO) remain common in patients under protective
ventilation for acute respiratory distress syndrome (ARDS). We sought to describe the hemodynamic profile associated
with either ACP or PFO, or both, during the early course of moderate-to-severe ARDS using echocardiography.

Methods: In this 32-month prospective multicenter study, 195 patients with moderate-to-severe ARDS were assessed
using echocardiography during the first 48 h of admission (age: 56 (SD: 15) years; Simplified Acute Physiology Score:
46 (17); PaO2/FiO2: 115 (39); VT: 6.5 (1.7) mL/kg; PEEP: 11 (3) cmH2O; driving pressure: 15 (5) cmH2O). ACP was defined
by the association of right ventricular (RV) dilatation and systolic paradoxical ventricular septal motion. PFO was
detected during a contrast study using agitated saline in the transesophageal bicaval view.

Results: ACP was present in 36 patients, PFO in 21 patients, both PFO and ACP in 8 patients and the 130 remaining
patients had neither PFO nor ACP. Patients with ACP exhibited a restricted left ventricle (LV) secondary to RV dilatation
and had concomitant RV dysfunction, irrespective of associated PFO, but preserved LV systolic function. Despite
elevated systolic pulmonary artery pressure (sPAP), patients with isolated PFO had a normal RV systolic function. sPAP
and PaCO2 levels were significantly correlated.

Conclusions: In patients under protective mechanical ventilation with moderate-to-severe ARDS, ACP was associated
with LV restriction and RV failure, whether PFO was present or not. Despite elevated sPAP, PFO shunting was associated
with preserved RV systolic function.
Introduction
In patients with the acute respiratory distress syndrome
(ARDS), acute right ventricular (RV) afterloading
secondary to increased pulmonary vascular resistance
may result in acute cor pulmonale (ACP) or patent
foramen ovale (PFO). Despite the use of protective
mechanical ventilation, the prevalence of ACP and PFO
has recently been reported to range between 22 and
25%, and 16 and 19% of ARDS patients, respectively
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[1-4]. PFO shunting may worsen ARDS-induced
hypoxemia, thereby limiting the beneficial effects of
recruitment maneuvers such as positive end-expiratory
pressure (PEEP) trials [2]. In contrast, PFO may
reduce the deleterious effects of elevated pulmonary
vascular resistance on RV systolic function. Indeed,
balloon atrial septostomy is a proposed procedure
aimed at decompressing right cardiac pressures and
increasing left ventricular (LV) preload and cardiac
output in patients with severe pulmonary hypertension
and associated afterloaded RV [5].
Transesophageal echocardiography (TEE) is more ac-

curate than transthoracic echocardiography (TTE) for the
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diagnosis of ACP and PFO in mechanically ventilated pa-
tients with ARDS [3]. Noninvasive hemodynamic assess-
ment using echocardiography in ventilated patients with
ARDS and associated ACP or PFO have yet been scarcely
reported, and solely in single-center studies [1,2,6]. Specif-
ically, the potential influence of PFO on RV function in
ARDS patients, with respect to its association with ACP
or not, has not yet been elucidated. Accordingly, we
sought to describe the hemodynamic profile in patients
who develop ACP and shunting through a PFO in a large,
multicenter, previously described population of mech-
anically ventilated patients during the early course of
moderate-to-severe ARDS [3].

Material and methods
Patients
This prospective observational study was conducted in
nine intensive care units (ICUs) and was approved by
the ethics committee of the Société de Réanimation de
Langue Française, which waived informed consent since
it was in accordance with the standard of care of partici-
pating centers. Between November 2009 and June 2012,
all patients with ARDS, as defined by the American-
European consensus conference [7] modified for one
criterion (partial pressure of arterial oxygen/fraction of
inspired oxygen (PaO2/FiO2) ≤200 with a FiO2 of 1 and
PEEP ≥5 cm H2O) were screened to participate in the
study. Cardiogenic pulmonary edema was ruled out by
the depiction of low LV filling pressure during echocardio-
graphic assessment, as reflected by a lateral E/E’ ratio <8
[8]. Since this study was performed prior to the recent
Berlin definition of ARDS [9], we secondarily classified
the severity of ARDS-induced hypoxemia in our patients
accordingly.

Echocardiography
TTE and TEE examinations were all performed by inten-
sivists highly trained in critical care echocardiography
[10]. In the long-axis view of the heart (TEE four-chamber
view), RV end-diastolic area (RVEDA), RV end-systolic
area (RVESA), LV end-diastolic area (LVEDA), and LV
ejection fraction (LVEF) using the modified Simpson’s rule
were measured. RV fractional area change (RVFAC) was
computed as RVEDA - RVESA/RVEDA and expressed as
a percentage. In the short-axis view of the heart (transgas-
tric short-axis view at the level of the papillary muscles),
the ventricular septal motion was analyzed throughout the
cardiac cycle. The LV eccentricity index was measured
both at end-systole and at end-diastole [11]. The 100 to
120° transgastric view allowed the measurement of LV
outflow tract (LVOT) Doppler flow velocity time integral.
A pulse wave Doppler sample was located to solely ob-
tain the closing click of the aortic valve, with the best
alignment with the systolic LV outflow [12]. The LVOT
diameter was measured at the level of the aortic cusps
insertion in the transesophageal 120° view zoomed on
the initial ascending aorta, and the orifice area was cal-
culated as Π x (LVOT diameter)2/4. The LV stroke volume
(LVSV) was calculated as LVOT area x LVOT Doppler
flow velocity time integral [12], and the cardiac index was
computed. The maximal velocity of tricuspid regurgitation
(Vmax TR) and M-mode tricuspid annular plane systolic
elevation (TAPSE) were measured in the apical four-
chamber view [13]. Systolic pulmonary artery pressure
(sPAP) was obtained using the simplified Bernouilli’s equa-
tion: 4 x (Vmax TR)2 + central venous pressure (CVP). To
reduce the lack of precision of CVP estimation based on
the size of the inferior vena cava [14], CVP was invasively
measured through central venous catheters. For each
parameter, three non-consecutive measurements were
performed at end-expiration and averaged. In previous
studies, the interobserver variability in the measurement
of pulse wave Doppler indices ranged between 1 and 13%
[15], and the interobserver variability in the measurement
of two-dimensional parameters was less than 10% [16].
ACP was defined by the association of RV dilatation in

the long-axis view of the heart (RVEDA/LVEDA >0.6)
and a visually identified systolic paradoxical ventricular
septal motion in the short-axis view of the heart [17].
PFO was detected during a contrast study using agitated
saline in the TEE bicaval view, without provoking ma-
neuvers such as end-inspiratory breath holding or sud-
den release of PEEP [18]. PFO shunting was defined as
the issue of microcavitations from the right to the left
atrium within three cardiac cycles after the full opacifi-
cation of the right atrium [3].

Statistical analysis
Patients were divided into the four following groups:
presence of both a PFO and ACP, presence of isolated
PFO, presence of isolated ACP, and absence of both
PFO and ACP. Categorical variables were reported as
numbers and percentages. Continuous variables were
expressed as mean and standard deviation (SD) or me-
dian and 25th to 75th percentiles. Comparisons between
the four groups were performed with Fisher’s exact test
for binary variables and Kruskal-Wallis test for continu-
ous variables. The correlation between individual values
of partial pressure of arterial carbon dioxide (PaCO2)
and sPAP was calculated using a Pearson correlation
coefficient. A P value <0.05 was considered statistically
significant.

Results
Of 201 patients with ARDS included in the study, the
echocardiographic examination was not available for off-
line measurements in 6 patients. Finally, 195 patients
were studied (age: 56 (SD: 15) years; Simplified Acute
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Physiology Score: 46 (17); PaO2/FiO2: 115 (39); tidal
volume (VT): 6.5 (1.7) mL/kg; PEEP: 11 (3) cmH2O; driv-
ing pressure: 15 (5) cmH2O). ARDS was mainly related to
infective pneumonia (62%) and was associated with a glo-
bal 28-day mortality rate of 23% (95% confidence interval
(CI): 17% to 30%). ACP was present in 36 patients, PFO in
21 patients, both PFO and ACP in 8 patients and the 130
remaining patients had neither PFO nor ACP.
Respiratory and circulatory parameters were not sta-

tistically different between groups in these patients with
moderate-to-severe ARDS who underwent protective ven-
tilation and frequently received vasopressor support. Prone
positioning was used more frequently in patients with
isolated ACP than in other groups (Table 1). When com-
pared to patients with isolated PFO or ACP, patients with
both PFO and ACP exhibited greater RV dilatation, as
reflected by a higher median RVEDA/LVEDA ratio
(Table 2). LV end-systolic eccentricity index was signifi-
cantly higher in ACP patients, irrespective of associated
PFO. In contrast, LV end-diastolic eccentricity index did
not differ between groups. Patients with ACP exhibited
LV restriction, as reflected by a significantly lower median
LV end-diastolic volume (LVEDV), and tended to have
lower LVSV, whether PFO was associated or not (Table 2).
LVEF was uniformly preserved across groups. In contrast,
RV systolic function was reduced in ACP patients, irre-
spective of associated PFO, as reflected by significantly
lower median values of RVFAC and TAPSE. Despite sub-
stantially elevated sPAP, patients with isolated PFO had
preserved RV function, with similar median values of
RVFAC and TAPSE than those of patients without PFO
Table 1 Respiratory and hemodynamic variables according to

Parameters PFO and ACP PFO only

(n = 8) (n = 21)

VT/predicted body weight (mL/kg) 6.5 [5; 7] 6 [5; 7]

PEEP (cmH2O) 10 [6; 13] 10 [8; 12]

Driving pressure (cmH2O)
b 15 [13; 16] 16 [13; 17

PaO2/FiO2 95 [75; 115] 107 [71; 1

PaCO2 (mmHg) 47 [40; 62] 48 [41; 52

Heart rate (bpm) 106 [91; 116] 105 [97; 1

mBP (mmHg) 79 [70; 85] 79 [70; 89

CVP (mmHg) 11 [10; 13] 11 [10; 12

Lactates (mmol/L) 1.3 [1.2; 1.9] 1.3 [1; 2]

Prone positioning (n) 2 (25%) 3 (14%)

Nitric oxide (n) 3 (38%) 2 (10%)

Vasopressor support (n) 6 (75%) 10 (48%)

28-day mortality (n) 1 (13%) 6 (29%)
aResults are expressed as median values with 25th to 75th percentiles unless otherw
and positive end-expiratory pressure. ACP, acute cor pulmonale; PFO, patent foram
pressure of arterial oxygen; FiO2, fraction of inspired oxygen; PaCO2, partial pressur
venous pressure.
and ACP (Table 2). Median sPAP was significantly higher
in patients with a PaCO2 > 60 mmHg (51 ± 13 vs. 42 ±
13 mmHg: P = 0.04). A significant correlation was found
between sPAP and PaCO2 levels in the study population
(r: 0.35; P = 0.0002) (Figure 1).

Discussion
In this large population of patients ventilated for
moderate-to-severe ARDS, ACP was associated with LV
restriction and depressed RV systolic function, whether
it was associated with PFO or not. ACP is the most
severe presentation of RV failure secondary to an abrupt
rise in RV afterload [17], such as that resulting from
increased pulmonary vascular resistance associated with
ARDS [19]. In our ACP patients, RV dilatation resulted
in LV restriction within the stiff pericardial sac [17], as
reflected by the significantly reduced median LVEDV,
irrespective of associated PFO. This decrease of LV pre-
load due to ventricular interaction presumably accounted
for the observed trend of lower LVSV measured in ACP
patients, since those patients had otherwise preserved LV
systolic function, as reflected by normal LVEF. Since LVEF
is internally normalized by preload (that is, LVEDV), me-
dian values were similar and uniformly normal across
study groups. In 19 out of 75 ARDS patients exhibiting
ACP, Vieillard-Baron et al. [1] previously reported a
significantly reduced indexed LVEDV resulting in a de-
creased LV stroke index, in the presence of a normal
LVEF. Due to the consistent use of a protective venti-
lation in our patients with moderate-to-severe ARDS,
median driving pressure and median PaCO2 level were
the presence or absence of ACP and/or PFOa

ACP only No PFO and no ACP P value

(n = 36) (n = 130)

6.5 [6; 8] 6 [5; 7] 0.64

10 [8; 14] 11 [8; 12] 0.36

] 15 [12; 20] 14 [11; 17] 0.22

53] 114 [72; 145] 112 [91; 154] 0.33

] 50 [44; 58] 45 [39; 53] 0.28

28] 97 [85; 113] 100 [85; 116] 0.29

] 80 [74; 88] 81 [73; 90] 0.80

] 11 [10; 14] 10 [9; 12] 0.96

1.3 [1; 2.1] 1.4 [1.1; 2] 0.93

18 (50%) 44 (34%) 0.04

6 (17%) 14 (11%) 0.15

18 (50%) 62 (48%) 0.55

9 (25%) 29 (22%) 0.82

ise stated; bdefined as the difference between the inspiratory plateau pressure
en ovale; VT, tidal volume; PEEP, positive end-expiratory pressure; PaO2, partial
e of arterial carbon dioxide; mBP, mean blood pressure; CVP, central



Table 2 Echocardiographic findings according to the presence or absence of ACP and/or patent foramen ovale PFOa

Parameters PFO and ACP PFO only ACP only No PFO and no ACP P value

(n = 8) (n = 21) (n = 36) (n = 130)

RVEDA/LVEDA (cm2) 0.88 [0.69; 1.34] 0.71 [0.57; 0.77] 0.75 [0.64; 0.92] 0.62 [0.52; 0.72] 0.0002

LV eccentricity index at end-systole 1.32 [1.3; 1.44] 1.07 [1.02; 1.09] 1.33 [1.27; 1.51] 1.06 [1; 1.11] <0.0001

LV eccentricity index at end-diastole 1.13 [1.07; 1.2] 1.08 [1.01; 1.14] 1.09 [1.04; 1.18] 1.07 [1.01; 1.13] 0.21

Cardiac index (L/min/m2) 3.58 [2.78; 3.71] 3.28 [2.84; 4.18] 2.93 [2.62; 3.37] 3.16 [2.6; 3.98] 0.27

LV stroke volume (mL) 59 [46; 68] 61 [48; 76] 58 [49; 61] 63 [52; 73] 0.09

LVEDV (mL) 67 [51; 85] 85 [54; 100] 79 [66; 93] 87 [68; 106] 0.04

LVEF (%) 65 [55; 74] 62 [46; 70] 58 [48; 66] 56 [44; 68] 0.60

RVFAC (%) 18 [15; 25] 32 [24; 40] 26 [17; 34] 34 [26; 42] 0.0007

TAPSE (mm) 15 [14; 20] 20 [17; 23] 18 [16; 20] 20 [16; 23] 0.02

Doppler-derived sPAP (mmHg) 46 [41; 60] 50 [39; 67] 45 [37; 55] 42 [35; 49] 0.17
aResults are expressed as median values with 25th to 75th percentiles. ACP, acute cor pulmonale; PFO, patent foramen ovale; RVEDA, right ventricular end-diastolic
area; LVEDA, left ventricular end-diastolic area; LV, left ventricle; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; RVFAC, right
ventricular fractional area change; TAPSE, tricuspid annular plane systolic elevation; sPAP, systolic pulmonary artery pressure.
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not significantly different between groups. The significant
correlation between PaCO2 and sPAP levels is consistent
with the effects of hypercapnia on the pulmonary vascular
bed [20]. The pulmonary vasoconstriction induced by ele-
vated PaCO2 level may precipitate RV failure in patients
with elevated pulmonary vascular resistance, as in ARDS
[21]. We previously showed that the PaCO2 level was the
only independent factor associated with ACP, when con-
sidered as either a continuous or a binary variable [3].
Although increased LV eccentricity index at end-systole
was consistent with RV afterloading [11] in our patients
with ACP, irrespective of associated PFO, sPAP was not
significantly higher when compared to the remaining pa-
tients. This contrasts with a greater pulmonary hyperten-
sion previously reported in ACP patients assessed using
TEE [1,4]. Although we did not measure RV outflow,
Figure 1 Relationship between individual values of PaCO2 and systolic pul
patients under protective ventilation using continuous wave Doppler interrog
distress syndrome; PaCO2, partial pressure of arterial carbon dioxide.
median RVFAC was low in our ACP patients, whether
PFO was associated or not, and significantly decreased
when compared to other groups, suggesting altered RV
systolic function. This may have contributed to the ab-
sence of significant increase in sPAP in patients with ACP.
Although median TAPSE was significantly lower in ACP
patients, its reduction was less pronounced than that
observed for median RVFAC. This may be related to the
previously reported dependence of TAPSE to LV systolic
function in ICU patients, both at baseline and following
abrupt changes in loading conditions and inotropic state
[22]. Noticeably, in our ACP patients who were frequently
under vasopressor support, echocardiographically depic-
ted hemodynamic changes were not associated with rele-
vant variations of mean arterial blood pressure or lactate
level. A more aggressive management of these patients
monary artery pressure (sPAP) measured in moderate-to-severe ARDS
ation of tricuspid regurgitant jet, when present. ARDS, acute respiratory
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who were identified early by systematic TEE assessment
may explain this result [3], as reflected by the more fre-
quent use of prone positioning, which has been shown to
decrease RV afterloading [23].
Pulmonary hypertension contributes to the presence

of PFO shunting in patients sustaining massive pulmon-
ary embolism [24]. In contrast with a previous report
[2], only 4% of our ARDS patients had both a PFO and
ACP. Despite substantial levels of sPAP, patients with
isolated PFO had a preserved RV systolic function, as
reflected by median values of RVFAC and TAPSE, which
were close to those measured in patients without ACP
and PFO. This suggests that interatrial shunting could
have a protective effect in unloading the RV submitted
to abruptly increased afterload. In contrast, this potential
mechanism was not operant in patients with both ACP
and PFO who exhibited reduced median values of RVFAC
and TAPSE, similar to those measured in patients with
isolated ACP. This is presumably related to the greater se-
verity of RV afterloading in these specific groups, which is
reflected by a markedly increased LV end-systolic eccen-
tricity index, and to the predominantly small and intermit-
tent PFO shunting observed in our ARDS patients [3].
This multicenter study suffers from several limitations.

Although this exploratory multicenter study included a
large number of ARDS patients, the sample size of certain
study groups is small. We did not measure RV outflow to
indirectly assess pulmonary vascular resistance in our
ARDS patients [25]. Accordingly, we could not substanti-
ate the mechanism of ACP-associated RV failure, which
mainly relies on acute afterloading [17]. We used LVEF as
an index of LV systolic function even though this param-
eter is known to be load-dependent and therefore fails to
reflect intrinsic myocardial contractility [26]. We did not
perform serial echocardiographic assessment in all our pa-
tients to determine the course of ARDS-associated ACP
and PFO. Finally, our cohort remains too small to assess
the potential impact of the severity of ARDS-associated
hypoxemia and hypercapnia on central hemodynamics
and to confirm the deleterious effect of marked RV dilata-
tion (that is, RVEDA/LVEDA >1) on cardiac performance,
as previously suggested [27].

Conclusions
In patients under protective mechanical ventilation with
moderate-to-severe ARDS, ACP was associated with LV
restriction and RV failure, whether PFO was conco-
mitantly present or not, while LV systolic function was
preserved. sPAP was significantly correlated with PaCO2

level. Despite a substantially increased sPAP, patients
with isolated PFO shunting exhibited normal RV func-
tion. The influence of the severity of ARDS-associated
hypoxemia and hypercapnia on central hemodynamics
and the course of ACP and PFO in ARDS patients under
protective ventilation remain to be determined in further
large-scale studies.

Key messages

� In patients under protective mechanical ventilation
for moderate-to-severe acute respiratory distress
syndrome, acute cor pulmonale was associated
with a restricted left ventricle and impaired right
ventricular systolic function, irrespective of
associated patent foramen ovale

� In these patients, left ventricular stroke volume
tended to be lower while left ventricular systolic
function was preserved

� Despite elevated systolic pulmonary artery pressure,
patients with isolated patent foramen ovale shunting
had normal right ventricular systolic function.
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