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Abstract

Introduction: Despite improvements in pre-hospital and post-arrest critical care, sudden cardiac arrest (CA) remains
one of the leading causes of death. Improving circulation during cardiopulmonary resuscitation (CPR) may improve
survival rates and long-term clinical outcomes after CA.

Methods: In a porcine model, we compared standard CPR (sCPR; n =10) with CPR using an intravascular cardiac
assist device without additional chest compressions (iCPR; n =10) following 10 minutes of electrically induced
ventricular fibrillation (VF). In a separate crossover experiment, 10 additional pigs were subjected to 10 minutes of
VF and 6 minutes of sCPR; the iCPR device was then implanted if a return of spontaneous circulation (ROSC) was
not achieved using sCPR. Animals were evaluated in respect to intra- and post-arrest hemodynamics, survival, functional
outcome and cerebral and myocardial lesions following CPR. We hypothesized that iCPR would result in more frequent
ROSC and better functional recovery than sCPR.

Results: iCPR produced a mean flow of 1.36 +0.02 L/min, leading to significantly higher coronary perfusion
pressure (CPP) values during the early period of CPR (22 + 10 mmHg vs. 9 + 5 mmHg, P <001, 1 minute after start of
CPR; 20+ 11 mmHg vs. 10 + 7 mmHg, P =0.03, 2 minutes after start of CPR), resulting in high ROSC rates (100% in iCPR
vs. 50% in sCPR animals; P =0.03). iCPR animals showed significantly lower serum S100 levels at 10 and 30 minutes
following ROSC (3.5 + 0.6 ng/ml vs. 74 + 3.0 ng/ml 30 minutes after ROSC; P <0.01), as well as superior clinical outcomes
based on overall performance categories (29+ 1.0 vs. 46+ 0.8 on day 1; P <0.01). In crossover experiments, 80% of
animals required treatment with iCPR after failed sCPR. Notably, ROSC was still achieved in six of the remaining eight
animals (75%) after a total of 22.8 + 5.1 minutes of ischemia.

Conclusions: In a model of prolonged cardiac arrest, the use of iCPR instead of sCPR improved CPP and doubled ROSC
rates, translating into improved clinical outcomes.

Introduction

Chest compression, assisted ventilation and defibrilla-
tion provide the basis of modern cardiopulmonary
resuscitation (CPR). However, a large proportion of
patients with cardiac arrest die despite resuscitation
efforts or survive with detrimental functional outcomes

* Correspondence: mderwall@ukaachen.de

Klinik far Anasthesiologie, Uniklinik RWTH Aachen, Pauwelsstrasse 30,
Aachen D-52074, Germany

Full list of author information is available at the end of the article

( BiolMed Central

[1,2]. Prolonged ischemia and the limited efficacy of
conventional CPR measures have been identified as
contributors to the high cardiac arrest mortality,
which exceeds 70% [3,4]; thus international guidelines
are aimed at promoting the importance of uninter-
rupted, high-quality chest compressions [5]. Unfortu-
nately, manual chest compressions result in only 25%
to 40% of pre-arrest cardiac output values [6], and
compressions are often interrupted [7]. Thus, improving
circulation during CPR may increase the number of
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successfully resuscitated patients. However, recent stud-
ies of the use of external mechanical resuscitation de-
vices have not demonstrated consistent improvement in
outcomes [8-10].

Mechanical circulatory support is increasingly being
used in patients with acute heart failure [11]. Recently,
the use of venoarterial extracorporeal membrane oxy-
genation (ECMO) has been reproposed [12-14] to im-
prove survival in patients presenting with in-hospital
cardiac arrest [14]. However, the emergency use of
ECMO requires insertion of large-bore cannulas into
the femoral artery and vein and priming a complex
system including tubing and a centrifugal pump. In
contrast, the use of a minimally invasive intravascular
left ventricular assist device (Impella 2.5; Abiomed,
Danvers, MA, USA), which pumps blood from the
left ventricle into the ascending aorta, requires only
a single vascular access with no external tubing (Figure 1).
The device is used to support patients during high-
risk percutaneous interventions, post-cardiotomy heart
failure and severe cardiogenic shock [15]. In previous
experimental studies, researchers demonstrated super-
ior perfusion of vital organs in a cardiac arrest setting
in an open-chest pig model using the Impella 2.5 com-
pared with direct cardiac compression [16]. Whether
such a strategy could be superior to standard CPR
(sCPR) in a closed-chest model with respect to im-
proved CPR success rates and better neurological out-
comes is unknown. Therefore, we designed this study
to test the efficacy of intravascular CPR (iCPR) using
the Impella 2.5 in an established porcine model of car-
diac arrest. We hypothesized that iCPR would result
in a more frequent return of spontaneous circulation
(ROSC) and better functional recovery compared with
sCPR.
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Material and methods

Study design and ethical approval

A large animal model of cardiac arrest and CPR was
employed, as has been previously described by our group
[17-20]. Thirty male domestic pigs at 4 months of age,
(weighing 34.6 £ 4.6 kg) were studied. All procedures
were conducted in accordance with principles set forth
for the care and use of animals based on the Helsinki
Declaration, and they were approved by the appropriate
governmental institution (Landesamt fiir Natur, Umwelt
und Verbraucherschutz NRW (LANUV), Recklinghau-
sen, Germany).

Anesthesia and instrumentation

Pigs were anesthetized with an intramuscular injection
of 4 mg/kg azaperone, followed by ear vein injection of
15 mg/kg sodium pentobarbital. Anesthetized animals
were intubated and mechanically ventilated (Servo
Ventilator 300A; Siemens AG, Munich, Germany) with
an inspired oxygen fraction (FiO,) of 0.21 and a tidal
volume of 10 ml/kg. The respiratory frequency was ad-
justed to maintain an end-tidal carbon dioxide tension
(pCO,) between 35 and 40 mmHg (4.7 and 5.3 kPa). A
continuous infusion of pentobarbital (4 mg/kg/hr) was
administered during the preparation period and discon-
tinued 30 minutes before the induction of ventricular
fibrillation (VF). Anesthesia was resumed 30 minutes
after successful resuscitation and continued until ani-
mals were weaned from the respirator. Placement of
indwelling catheters in femoral artery and vein was per-
formed with ultrasound guidance. Finally, a HexaLumen
Swan-Ganz catheter was flow-directed from the left fem-
oral vein into the pulmonary artery (744HF75; Edwards
Lifesciences, Irvine, CA, USA). To induce VF, a 5-French
pacing catheter was fluoroscopically advanced from the
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Figure 1 Photograph of the Impella 2.5 intravascular cardiopulmonary resuscitation device and illustration of its intraventricular
placement. (A) Photograph of the unmodified percutaneous left ventricular assist device (Impella 2.5; Abiomed Europe GmbH, Aachen, Germany)
used in this investigation. The lower portion of the picture is a magnification of the catheter tip. (B) lllustration of the final position of the device
with the tip in the left ventricle. Note that the inlet area of the pump is positioned within the left ventricle, with the outlet situated in the
ascending aorta, serving both the coronary and carotid arteries. Both pictures are reprinted with permission from Abiomed. iCPR, Intravascular
cardiopulmonary resuscitation.
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surgically exposed left cephalic vein into the right ven-
tricle. Blood temperature (measured in the pulmonary
artery via the Swan-Ganz catheter) was maintained at
38.2+0.2°C during preparation using a convective
heating blanket (Warm Touch 5200; Tyco Healthcare,
Pleasanton, CA, USA). To ensure adequate hydration, a
continuous infusion of Ringer’s solution was administered
at 4 ml/kg/hr.

For animals randomized to receive intravascular CPR
(iCPR), a 13-French sheath introducer (Impella 2.5 intro-
ducer kit 13 F, 13 cm; Abiomed) was placed in the right
femoral artery. Using this vascular access, a modified
Impella 2.5 left ventricular assist device (Abiomed
Europe GmbH, Aachen, Germany) equipped with a
shortened angled cannula to meet the anatomical con-
straints of the animal was introduced into the left ven-
tricle using fluoroscopy via a previously introduced
pigtail catheter (Cordis 6 F PIG 145° 110 c¢cm Super
Torque Plus; Cordis, Miami Lakes, FL, USA) and a
guidewire (Platinum Plus 0.018 inx 260 cm; Boston
Scientific, Natick, MA, USA) (see Figure 2 for details).

For crossover experiments, a pigtail catheter was ini-
tially advanced into the left ventricle via the 13-French
arterial sheath introducer to facilitate introduction of the
Impella 2.5 after sCPR had failed.
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All animals received two intravenous injections of
5,000 IU heparin; the first injection followed the comple-
tion of vascular access, and the second injection was ad-
ministered shortly before the induction of VF to prevent
blood clotting in catheters and introducer sheaths. To
prevent wound infections, all animals received a single
infusion of 1.5 g of cefuroxime during preparation.

Experimental protocols

Chest compression vs. intravascular cardiopulmonary
resuscitation

Cardiac arrest was induced with 1 to 2 mA of alternating
current delivered to the endocardium of the right ven-
tricle, resulting in VF. Simultaneously, mechanical venti-
lation was discontinued. Ten minutes following the
onset of VF, CPR treatment was initiated, either using
a piston-driven chest compressor (Thumper 1007;
Michigan Instruments, Grand Rapids, MI, USA) at a
rate of 100 compressions per minute as SCPR (n =10) or
by activating the previously implanted Impella 2.5 at the
maximum possible flow as iCPR (n =10). Chest compres-
sions were adjusted to provide a compression depth of
25% of the chest diameter. In animals treated with sCPR,
compressions were delivered unsynchronized with the
simultaneously restarted mechanical ventilation, with

Figure 2 Intravascular cardiopulmonary resuscitation device placement using fluoroscopy. Intraventricular placement of the intravascular
cardiopulmonary resuscitation (iCPR) device (modified Impella 2.5; Abiomed Europe GmbH, Aachen, Germany) before cardiac arrest and CPR as
depicted by fluoroscopy (Ziehm Vision; Ziehm Imaging GmbH, Nuremberg, Germany). (A) A pigtail catheter is advanced into the descending
(thoracic) aorta. SG, Swan-Ganz catheter; PT, Pigtail catheter. (B) The guidewire is advanced into the left ventricle via the pigtail catheter in situ.
(C) Final position of the guidewire (GW) following removal of the pigtail catheter. (D) The iCPR device is advanced into the ascending aorta using
the guidewire. (E) The iCPR device passes through the aortic arch. (F) Final position of the iCPR device with the tip situated in the left ventricle
following the removal of the guidewire. |, Inlet; O, Outlet; AO, Approximate location of the aortic valve. Besides the materials mentioned and
depicted above, a 13-French sheath introducer (Impella 2.5 introducer kit 13 F, 13 cm; Abiomed, Danvers, MA, USA) and an external microcontroller
(Impella Controller; Abiomed) are required for placement and operation of the iCPR device.
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equal compression—relaxation intervals (that is, a 50%
duty cycle) and a compression depth of 25% of the chest
diameter. In both groups, ventilation was adjusted to
deliver a tidal volume of 15 ml/kg at a rate of 10/min.
Concurrently, the FiO, was increased to 1.0, and a
bolus dose of 30 pg/kg epinephrine was injected into
the right atrium via the Swan-Ganz catheter. An infu-
sion of Ringer’s solution was started simultaneously via
the femoral vein access at a rate of 100 ml/min to sup-
port left ventricular filling. A second dose of adrenaline
(30 pg/kg) was administered 4 minutes and 30 seconds
after the start of resuscitation efforts. After 6 minutes
of sCPR or iCPR, defibrillation was attempted with up
to two 200-] biphasic waveform shocks (M-Series CCT;
Zoll Medical, Chelmsford, MA, USA) delivered between
the left and right axillae. If an organized rhythm with a
mean arterial pressure of greater than 60 mmHg per-
sisted for 5 minutes, the animal was regarded as
successfully resuscitated. If VF was not successfully re-
versed, 1 minute of sCPR or iCPR at the highest pos-
sible flow preceded the delivery of another sequence of
up to two shocks.

After successful resuscitation, animals were moni-
tored for 120 minutes. The FiO, was kept at 1.0 for
30 minutes before prompt reduction to 0.3. In the
iCPR group, the pump flow was adjusted to a rate of
1.5 L/min if ROSC had been achieved and was main-
tained for 60 minutes following ROSC. Thereafter,
the flow was slowly reduced over 30 minutes, and
the device was promptly removed. Hemostasis was
assured by local manual pressure on the puncture
site for 15 minutes. The incision above the left ceph-
alic vein was closed with a suture.

To ensure adequate pain relief, all pigs received an
intramuscular injection of 0.1 mg/kg buprenorphine
30 minutes before the end of the experiment. At the end
of the observation period, the pentobarbital infusion was
stopped, and animals were observed for signs of spon-
taneous breathing. Then, the ventilator was switched to
assisted ventilation mode (continuous positive airway
pressure assisted spontaneous breathing). When animals
reached sufficient minute ventilation, a spontaneous
breathing trial was attempted by disconnecting the res-
pirator from the endotracheal tube. When the animal
was able to maintain a peripheral capillary oxygen satur-
ation above 96% and pCO, below 45 mmHg at room air
for 10 minutes, the cuff of the endotracheal tube was de-
flated and the animal was monitored for a minimum of
another 5 minutes. If no depression in respiratory activ-
ity or blood gas values occurred, the endotracheal tube
was then carefully removed. Following extubation, every
animal was observed for at least 30 minutes to ensure
adequate spontaneous breathing before being returned
to its room.
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Crossover experiments

In ten other animals, sCPR was stopped when the first
two defibrillations at 200 ] failed to terminate VF or re-
sulted in asystole or pulseless electrical activity (PEA).
Then the Impella 2.5 device was placed as described
above (see Figure 2). iCPR was then initiated at the max-
imum flow capacity, and, simultaneously, another dose
of adrenaline was injected. Two minutes thereafter, de-
fibrillation at 200 ] was attempted when appropriate. In
other cases (for example, PEA), iCPR was maintained at
the highest flow possible until either ROSC was achieved
or 30 minutes of iCPR had passed without conversion
into an organized rhythm. In the latter case, the animal
was pronounced dead. In surviving animals, anesthesia
was discontinued 120 minutes after ROSC to allow for
gross neurological testing as described below, and the
animals were killed thereafter.

Post-arrest care

All animals of the first protocol were visited at least in
6-hour intervals after being returned to their cages to
observe clinical recovery. In cases where continuous
presence of personnel was required, animals were ob-
served permanently. If pigs were not able to rise, ad-
equate positioning was ensured by turning the animals
to minimize decubital ulceration of the skin. Further-
more, chow and water were offered by gentle spoon-
feeding in cases where animals exhibited inadequate
food intake. If an animal was not able to swallow,
Ringer’s solution was administered intravenously at a
rate of 10 ml/kg/hr. To allow for safe fluid administra-
tion, intravenous infusions were administered only when
personnel were present. Pain relief was provided by an
intramuscular injection of 0.1 mg/kg buprenorphine if
tachypnea (>20/min) was observed or an animal
seemed agitated. Animals that did not improve with
this protocol and were not able to stand up and walk
within 48 hours were killed by intravenous injection of
a lethal dose of pentobarbital. All animals underwent
systematic necropsy of the thoracic and abdominal
cavities to identify injuries to the chest or thoracic or
visceral organs.

Measurements

Dynamic data, including heart rate, end-tidal CO,
(EtCO,), mean arterial pressure (MAP) and mean pul-
monary artery pressure (MPAP), were continuously mea-
sured and digitally recorded (LabVIEW 2010, National
Instruments, Austin, TX, USA; RedLab 1616HS-BNC,
Meilhaus Electronic, Puchheim, Germany). Pump flow
of the Impella 2.5 was determined using the correspond-
ing controller (Automated Impella Controller, Software
version 1.6; Abiomed) and recorded using the LabVIEW
software. Cardiac output and blood temperature were
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continuously measured and recorded using a Vigilance
monitor (Edwards Lifesciences).

Coronary perfusion pressure (CPP) was calculated by
subtracting the mid-diastolic right atrial pressure from
the mid-diastolic aortic pressure [21]. However, as the
Impella does not generate pulsatile flow, no systolic or
diastolic pressures are present during iCPR. Therefore,
the non-pulsatile blood pressure was used for calcula-
tions during iCPR. As soon as pulsatile flow was present
in animals treated with iCPR, diastolic pressures were
used for CPP calculations.

The arterial oxygen and carbon dioxide tension (PaO,
and PaCO,, respectively), blood glucose levels and lactate
levels were measured using a point-of-care blood gas
analyzer (ABL 510; Radiometer, Copenhagen, Denmark).
These measurements were obtained at baseline (BL) (that
is, 5 minutes before cardiac arrest) and 10, 30, 60 and
120 minutes following ROSC.

At the same time points, serum samples were obtained
to determine myoglobin (to quantify myocardial injury)
and astroglial S100 protein levels (to quantify neuronal
cell death) and promptly frozen to allow for measure-
ments at a later time using commercially available
enzyme-linked immunosorbent assay kits (S-100: YK150,
BIOTREND Chemicals, Cologne, Germany; myoglobin:
EIA3955, DRG International, Springfield, NJ, USA).

Outcome testing

On each day post-arrest, animals were evaluated using a
common clinical performance score (Overall Perform-
ance Categories (OPC)) as described in previous studies
[18]. In brief, the test consists of five items representing
the degree of impairment: OPC 1 is normal, with no ob-
vious neurologic damage; OPC 2 represents moderate
disability, with animals being conscious and aware,
standing but unable to walk; OPC 3 is defined as severe
disability, with animals being neither fully aware nor un-
conscious, but with reaction to pain and auditory stim-
uli, and not able to stand or walk; OPC 4 is coma; and
OPC 5 is death or brain death. In animals that received
buprenorphine as part of the post-arrest care protocol,
an adequate interval (>4 hours) was allowed to elapse
before neurological testing was performed. Neurological
testing in the animals of the crossover experiments in-
cluded an examination of spontaneous breathing, gait
and pharyngeal and corneal reflexes.

Statistical analysis

All data are expressed as the mean + standard deviation
unless stated otherwise. Normal distribution of the data
was confirmed using the Kolmogorov-Smirnov test. For
group comparisons of continuous variables, repeated-
measures analysis of variance (ANOVA) was employed,
followed by pairwise Students t-tests at given time
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points, adjusted for multiple comparisons by Bonferro-
ni’s method in cases where significant differences were
observed. Where appropriate, Fisher’s exact test was
performed to compare categorical variables. In all cases,
P <0.05 was considered to indicate statistical signifi-
cance. IBM SPSS Statistics 21 software (Version 21.0.0.0;
IBM, Armonk, NY, USA) was used for statistical calcula-
tions. GraphPad Prism software (Version 6.02; GraphPad
Software, La Jolla, CA, USA) was used to create graphs.

Results

No differences in hemodynamic or blood gas variables
were observed between sCPR or iCPR animals at BL
(Table 1).

Although there was a trend toward higher EtCO,
values in iCPR-treated animals, this trend did not reach
statistical significance (Figure 3). In contrast, we ob-
served a rise in CPP when iCPR was initiated, which re-
sulted in significantly higher values than those in sCPR
animals over the first 2 minutes (P <0.01 for 11 minutes
after VF; P <0.05 for 12 minutes after VF) (Figure 4A).
In addition, iCPR-treated animals exhibited significantly
lower MPAP, which dramatically increased during chest
compression in sCPR animals (P <0.01 for 11 to 16 mi-
nutes after VF) (Figure 4B). This consistent increase in
CPP, in concert with the effectively lower MPAP, trans-
lated into a high rate of ROSC, as all animals in the
iCPR group were successfully resuscitated, compared
with only 50% in the sCPR group (P =0.03) (Figure 4C).

Although dosing of epinephrine did not differ signifi-
cantly between sCPR and iCPR treatment (2.4 +1.0 mg
vs. 2.8 +0.8 mg; P =0.38), we observed a significantly
higher number of shocks in sCPR-treated animals, even
when we excluded animals that did not achieve ROSC
(3.4 + 1.7 shocks vs. 1.6 + 1.1 shocks; P <0.01). Although
sCPR treatment tended to require more time before
ROSC was achieved, this notion did not reach statistical
significance (16.9 + 1.2 minutes vs. 19.6 £ 5.0 minutes;
P =0.16).

Animals in both groups showed typical signs of global
ischemia—reperfusion injury, with pronounced tachycar-
dia and subsequent reductions of BL cardiac output
values following successful CPR (see Tables 1 and 2). In
addition to a significant difference in PaCO, between
iCPR- and sCPR-treated animals 2 hours post-ROSC
(P <0.01), which was attributable to mild hyperventi-
lation in iCPR animals at the end of the observation
period, no differences in post-arrest hemodynamics
or blood gas variables were observed (Table 1).

iCPR yielded only approximately 50% of the maximum
pump flow capacity of 2.5 L/min (1.36 £ 0.02 L/min;
minimum, 0.87 L/min; maximum, 2.28 L/min). Never-
theless, 24 hours after resuscitation, the mortality rate
in the sCPR group exceeded 50%, in contrast to the
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Table 1 Hemodynamics and blood gas data®
BL PR 10 PR 30 PR 60 PR 120
sCPR, n =10 sCPR, n =5 sCPR, n =5 sCPR, n =5 sCPR, n =5
iCPR, n =10 iCPR, n =10 iCPR, n =10 iCPR, n =10 iCPR, n =10
HR (bpm) sCPR 109+ 28 160+ 23 169 £ 20 139+ 21 15+£27
iCPR 85+25 162 +36 149+ 32 112+23 92+12
MAP (mmHg) sCPR 100+ 15 94 + 26 77+£29 84+ 24 80+18
iCPR 96+ 10 85+22 88+ 13 80+18 89+ 22
CO (L/min) sCPR 58+10 52+19 55+£25 42+19 3112
iCPR 46+1.1 6.1+£09 48+0.7 32+08 3612
MPAP (mmHg) sCPR 19+£3 20+3 19£3 21+£3 202
iCPR 18+3 19+5 19+2 20£3 18+4
PaO, (mmHg) sCPR 100+ 10 520+ 33 511 +64 104 + 21 118+ 26
iCPR 107+ 11 447 £90 433 £109 159+£76 136+ 28
PaCO, (mmHg) sCPR 38+3 41+6 39+3 39+1 39+3°
iCPR 36£3 42+7 38+6 35+8 31+4°
Lactate (mmol/L) sCPR 2720 96+33 92+27 73£28 46+24
iCPR 1.7+£08 81+17 80+22 75+19 6.2+32
Glucose (mmol/L) sCPR 117+19 309 =66 290+ 83 241+78 193 +57
iCPR 129+ 25 242 +76 225+77 208 £ 61 178 £48
pH sCPR 748 +0.03 7.27 £0.09 7.30+0.05 735+0.06 740+ 0.05
iCPR 746 +0.03 7.27 +£0.09 7.30+0.08 7.36 £0.07 744 £0.08

#Hemodynamic and blood gas data in 20 pigs treated either with standard cardiopulmonary resuscitation (sCPR; n =10) or an intravascular CPR device (iCPR; n =10) at
baseline (BL) or 10 (PR10), 30 (PR30), 60 (PR60) or 120 (PR120) minutes following return of spontaneous circulation. All animals received a bolus dose of 30 pg/kg
epinephrine intravenously twice during CPR. HR, Heart rate; MAP, Mean arterial pressure; CO, Cardiac output; MPAP, Mean pulmonary artery pressure; PaO,, Arterial
oxygen tension; PaCO,, Arterial carbon dioxide tension. Mean + standard deviation. bp <0.01, iCPR vs. sCPR.
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Figure 3 End-tidal carbon dioxide pressure in animals
treated with intravascular cardiopulmonary resuscitation vs.
standard cardiopulmonary resuscitation. End-tidal carbon
dioxide pressure (etCO,) in animals treated with standard chest
compression (sCPR) (n =10) or the intravascular cardiopulmonary
resuscitation (iICPR) device (n =10). Data are presented as the
mean + standard error of the mean. BL, Baseline (that is, 5 minutes
prior to cardiac arrest).

mortality rate of only 10% in the iCPR group (Figure 4C).
Clinically, all animals in the sCPR group exhibited severe
neurological dysfunction, which was significantly less in
the iCPR-treated animals (P <0.01, sCPR vs. iCPR at
both day 1 and day 2) (Figure 4D). However, owing to
significant neurological impairment in both groups, sev-
eral animals had to be killed during the observation
period, resulting in diminished differences in both out-
comes and mortality on days 3 and 4 after resuscitation
(see Figures 4C and D for further details).

While serum myoglobin levels were comparable be-
tween iCPR and sCPR animals up to 2 hours post-CPR,
animals in the iCPR group had significantly lower
serum S100 levels compared with animals that received
sCPR 10 and 30 minutes following ROSC (P <0.01,
sCPR vs iCPR at 10 and 30 minutes after ROSC)
(Figure 5B).

In crossover experiments, eight of ten animals did not
achieve ROSC after sCPR and were further treated with
iCPR. Notably, of these eight animals, six were success-
fully resuscitated (Figure 6A) and exhibited a twofold
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Figure 4 Standard cardiopulmonary resuscitation vs. intravascular cardiopulmonary resuscitation. Comparison of standard cardiopulmonary
resuscitation (sCPR) (n =10) or intravascular cardiopulmonary resuscitation (iCPR) (n =10). Data are presented as the mean + standard error of the mean.
*P <0.05, comparing sCPR vs. iCPR. BL, Baseline (that is, 5 minutes prior to cardiac arrest). (A) Calculated coronary perfusion pressure (CPP). (B) Mean
pulmonary artery pressure (MPAP). (C) Survival data. Animals with severe neurocognitive outcomes were killed 48 hours post-CPR (n =5) or when they
were not able to stand or walk (n =1). ROSC, Return of spontaneous circulation. (D) Overall Performance Categories (OPC). OPC 1, Normal; no obvious
neurologic damage; OPC 2, Moderate disability; animals being conscious and aware, standing but unable to walk; OPC 3, Severe disability; animals being
neither fully aware nor unconscious, but with reaction to pain and auditory stimuli, not able to stand or walk; OPC 4, Coma; OPC 5, Death or brain death.

MPAP [mmHg]
[3,]

Days after CPR

increase in CPP values 30 seconds prior to defibrillation,
as shown in Figure 6B. Animals that did not achieve
ROSC with sCPR but did with iCPR (n =6) required, on
average, 3.3 £ 0.9 mg of epinephrine and 7.3 + 3.9 shocks
before ROSC was achieved.

Implanting the iCPR device following failed sCPR was
performed within 61 + 72 seconds, but led to prolonged
periods until ROSC was achieved in crossover experiments

(22.8 + 5.1 minutes for sCPR + iCPR vs. 16.9 + 1.4 minutes
for iCPR only; P <0.01). However, all animals resuscitated
with iCPR following failed sCPR exhibited brainstem
functions, such as spontaneous breathing, gaiting and
pharyngeal and corneal reflexes, after anesthesia was
ceased.

Necropsy revealed no macroscopically visible lesions
in the heart or major vessels, but it did show multiple

Table 2 Hemodynamics and blood gas data in crossover experiments®

BL, n =10 PR 10, n =6 PR 30, n =6 PR 60, n =6 PR 120, n =6
HR (bpm) 101£15 158 + 44 148 £ 40 124+39 134+£31
MAP (mmHg) 1M13+9 86+ 21 65+ 14 69+ 18 75+21
CO (L/min) 54+12 56+1.1 42+25 23+£06 28+12
MPAP (mmHg) 20£5 21+6 17+£4 19+5 21+4
Pa0O, (mmHg) 1043 +95 4928 +543 4870+ 39.7 1098+ 176 1121+£120
PaCO, (mmHg) 415+36 455+7.2 380£39 383+52 343+3.1
Lactate (mmol/L) 12+1.1 78+14 78+17 72+20 57+28
Glucose (mmol/L) 105+6 209 =85 201 £59 197 £47 186 + 44
pH 746 +0.04 7.22+0.09 7311005 7.37+0.07 740 £0.05

#Hemodynamic and blood gas data in ten pigs treated with intravascular cardiopulmonary resuscitation after failure of standard cardiopulmonary resuscitation at
baseline (BL) or at 10 (PR 10), 30 (PR 30), 60 (PR 60) or 120 (PR 120) minutes following return of spontaneous circulation. All animals received a bolus dose of

30 ug/kg epinephrine intravenously twice during cardiopulmonary resuscitation. HR, Heart rate; MAP, Mean arterial pressure; CO, Cardiac output; MPAP, Mean
pulmonary artery pressure; PaO,, Arterial oxygen tension; PaCO,, Arterial carbon dioxide tension. Data are presented as the mean + standard deviation.
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Figure 5 Biomarkers. Serum values of animals treated with standard cardiopulmonary resuscitation (sCPR) (n =10) or intravascular cardiopulmonary
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circulation. Data are presented as the mean + standard error of the mean. *Significant difference between iCPR and sCPR. (A) Myoglobin
serum levels were used as a correlate of myocardial ischemia. (B) Serum S100 levels were employed as an indicator of the degree of

rib fractures in all sSCPR-treated animals. No hemato- or
pneumothoraxes were found in any of the animals.

Discussion

Our study demonstrates that, during experimental car-
diac arrest, the use of iCPR provides significantly im-
proved CPP with concurrent significant reductions in
MPAP values, translating into good resuscitation out-
comes. The iCPR approach doubled survival and re-
sulted in a favorable overall outcome compared with
sCPR. We further demonstrated that iCPR following
6 minutes of futile sSCPR was still effective in 75% of the
animals that would most likely have died otherwise.

Benefits of mechanical circulatory support during
cardiopulmonary resuscitation

Resuscitation guidelines were first published in the
1970s and were based on the fundamental findings of
the importance of chest compression and artificial venti-
lation [22]. Major changes primarily highlighting the

importance of early defibrillation and post-resuscitation
care followed [23]. However, ultimate outcomes have
not been consistently improved, which may be partly ex-
plained by the way forward blood flow is generated dur-
ing sCPR. Chest compressions are at best able to deliver
20% to 30% of the stroke volume of a healthy human
[24] and roughly 30% of BL cardiac output in animals
[6]. In addition, rescuers deliver chest compressions in-
consistently [7,25] or become fatigued, thereby further
decreasing resuscitation success [26]. However, the use
of mechanical devices that provide sustained high-
quality chest compressions have yielded mostly disap-
pointing results [9,10]. From a mechanistic point of
view, forward blood flow generated by chest compres-
sions may, in general, offer a suboptimal approach to
overcoming ischemic insults because only depth and rate
can be controlled. Furthermore, coronary arteries are
perfused only during decompression (as they are per-
fused only during diastole in the beating heart). As a
consequence, adequate coronary flow is provided during
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Figure 6 Crossover experiments. Crossover experiments in ten pigs using the intravascular cardiopulmonary resuscitation device (iCPR)
following failed standard CPR (sCPR). Data are presented as the mean =+ standard error of the mean. (A) Survival data. (B) Calculated coronary
perfusion pressure (CPP) in eight pigs that either developed no return of spontaneous circulation (no ROSC, n =2) or developed spontaneous
circulation (ROSC, n =6) following treatment with iCPR. Values estimated 30 seconds after implantation of the iCPR device (Start iCPR) or
following at least 2 minutes of iCPR treatment, 30 seconds prior to defibrillation (Defib).
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only 50% of the CPR cycle. These hemodynamic proper-
ties are significantly different in iCPR, during which a
constant non-pulsatile flow is created. Thus, it is pre-
sumable that coronary perfusion with iCPR is superior
to sCPR, which is at least partly underscored by the fas-
ter increase of CPP values following initiation of CPR
compared with sCPR-treated animals. Furthermore, cor-
onary perfusion is dependent on not only the arterioven-
ous gradient, as suggested by CPP calculations. It has
been well described that unloading the left ventricle with
a left ventricular assist device leads to increased coron-
ary perfusion by lowering wall stress in the coronary ar-
teries [27], as well as to reduced myocardial injury
following reperfusion [28].

From this perspective, other approaches in which sev-
eral factors influencing the magnitude of reperfusion in-
jury can be modified are more promising in improving
resuscitation success. For example, ECMO offers the
possibility to effectively control not only blood flow but
also temperature and the content of the reperfusate. In
experimental settings, using ECMO in CPR is highly
effective and yields good resuscitation outcomes, even
after very prolonged cardiac arrest [29]. In specialized
centers, early ECMO therapy has been shown to im-
prove ROSC rates in in-hospital cardiac arrest patients
who do not respond to sCPR [14], and further benefits
due to technical refinements and miniaturization may be
anticipated [30]. However, in out-of-hospital patients,
such promising results were not obtained [31,32]. This
result can be explained in part by the highly invasive na-
ture of the procedure, which requires time-consuming
cannulation of two large vessels, increasing the risk of
cannula misplacement, vascular dissection and limb is-
chemia. Furthermore, patients treated with ECMO are
prone to sepsis, bleeding and renal failure [33].

The Impella system may offer significant advantages
over such approaches, as only single-vessel access is re-
quired. Furthermore, no external circuit is needed, and
blood flow from the left ventricle into the ascending
aorta is more likely to perfuse the heart and brain than
is the case with ECMO, with the flow directed retro-
gradely into the abdominal aorta [34]. Furthermore, we
observed significantly lower pressures in the pulmonary
artery in iCPR, which was most likely due to the intra-
ventricular uptake of blood by the iCPR device. This was
an unanticipated effect, which may sufficiently explain
improved ROSC rates in iCPR animals, as it has been re-
ported that elevated right ventricular pressures signifi-
cantly impair coronary blood flow [35]. However, this
ventricular unloading did not result in higher blood flow
values, as documented by EtCO, during CPR, or greater
cardiac output following ROSC.

Although the use of the Impella system has been ex-
tensively described in several cases of advanced cardiac
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failure [36], there are only a few reported studies of its
use in the context of cardiac arrest, predominantly in
post-cardiac arrest patients presenting with low cardiac
output syndrome or recurring episodes of VF [37]. In
three animal studies, Tuseth and colleagues showed that
cerebral and myocardial perfusion could be significantly
improved compared with open-chest cardiac compres-
sions for up to 45 minutes [16,38,39]. However, they did
not report whether this therapy had an influence on sur-
vival or neurological outcome in a closed-chest model of
cardiac arrest and CPR. Our results clearly demonstrate
a dramatic improvement in resuscitation efficacy using
the iCPR approach, even after conventional CPR failed
and ischemia time exceeded 20 minutes. These clinical
results were reflected by lower serum markers for cere-
bral injury in the early post-resuscitation period and a
trend toward less myocardial injury, as detected with
serum myoglobin levels. The lack of a significant differ-
ence in serum myoglobin levels shows that the degree of
myocardial injury appears to be dominated by ischemia,
not mechanical trauma in our setting.

Although our results have the potential to introduce a
new paradigm in resuscitation science, they should not
be considered to imply a less important role for conven-
tional chest compressions in CPR. Chest compressions
remain a simple and readily available technique by which
to provide circulatory support that can buy time until
the appropriate therapy, such as defibrillation or percu-
taneous coronary intervention, can be established. How-
ever, the iCPR intervention proposed here may be more
suitable than sCPR in specific populations or circum-
stances, such as prolonged CPR in hypothermic or
intoxicated patients, cardiac arrest in the catheter la-
boratory, or following recent sternotomy.

Translation into clinical practice

Several issues need to be addressed before direct transla-
tion of the iCPR approach to the clinical setting can
occur. The flow delivered by the device was only 50% of
the maximum capacity of 2.5 L, which may be explained
by the smaller size of the left ventricular cavity in swine
hearts compared with human hearts. Furthermore, al-
though we generously administered intravenous fluid
during CPR, left ventricular filling may have been sub-
optimal, as iCPR treatment does not feature variations
in intrathoracic pressure and may therefore result in
lower venous return than occurs during sCPR. In this
context, it is noteworthy that during CPR, pulmonary ar-
tery pressure and pulmonary vascular resistance are
known to be almost threefold higher than normal, thus
limiting right-to-left-sided blood flow in this setting
[40,41]. Strategies to promote blood flow from the right
to the left side of the heart by administering inhaled pul-
monary vasodilators, such as nitric oxide or prostacyclin,
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during CPR may therefore be a promising strategy for
increasing left ventricular filling and thus stroke volume
[42]. However, the lower MPAP values in this investiga-
tion suggest that using the iCPR approach per se may
facilitate right-to-left-sided blood flow. Additionally, aug-
mentation of systemic vascular resistance with the aim
of increasing the perfusion of vital organs, such as the
brain, heart and kidneys, may be further enhanced if the
iCPR device is equipped with a balloon partially occlud-
ing the descending aorta [43].

Another important consideration is vascular access
and placement of the device under clinical conditions.
Identifying and successfully puncturing the femoral ar-
tery in cardiac arrest patients, most of whom have
underlying calcifications of large vessels, are more com-
plicated than under the controlled circumstances of our
laboratory investigation. This is also true for the correct
placement of the device in the left ventricle, which was
performed under fluoroscopic guidance. All these obsta-
cles may limit the use of the iCPR strategy to certain
clinical settings. However, the value of this approach
may be even higher in the preclinical setting, with the
aim of promoting vital organ blood flow as early as pos-
sible, as this has been identified as one of the key factors
for enhancing cardiac arrest outcomes [44,45]. Gaining
arterial access has been found to be safe and feasible in
the prehospital setting and may be enhanced by using
ultrasound [46,47]. Emergency sonography of the heart
may also guide placement of the Impella device [48].

Translation of the iCPR approach to the preclinical
arena may therefore be more feasible than one would as-
sume based on today’s Impella procedures and protocols.

Limitations

We recognize several limitations when interpreting our
results. First, the results were obtained from healthy
animals, which precludes the direct translation of results
to humans, many of whom present with underlying
diseases.

Second, we did not directly measure cerebral or
coronary blood flow during CPR, which has been exten-
sively reported by Tuseth and colleagues in an open-
chest cardiac arrest model [16,38,39]. However, because
we decided to focus on resuscitation success and clinical
outcomes, we were obliged to avoid invasive measure-
ments that may have compromised survival itself.

Third, others have reported higher CPP values in simi-
lar experimental settings when using advanced CPR-
augmenting techniques such as active decompression
CPR or an impedance threshold device. The quality of
CPR in the sCPR group may therefore have potential for
improvement. However, these devices are not widely
used in clinical practice, as they both increase the work-
load during CPR and have yet to show whether they
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contribute to improved survival. We therefore opted not
to use these in the current investigation to reflect clin-
ical reality in our model.

Furthermore, it remains unclear whether the cardiac
support provided by iCPR following ROSC contributed
to the favorable neurological outcomes in these animals.
This may very well be the case, although neither EtCO,
nor cardiac output showed a significant difference be-
tween surviving sCPR and iCPR animals in the early or
late post-CPR period. Cardiac support with the Impella
device may have contributed to the better outcome, as it
may have prevented rearrest due to better coronary per-
fusion in the early post-arrest period in iCPR-treated an-
imals. As patients frequently present with sustained
arrhythmias following ROSC, this may be a possible ad-
vantage over chest compression CPR, where cardiac sup-
port stops as soon as chest compressions are suspended.
However, others have found that cardiac support in
heart failure with an intra-aortic balloon pump [49] or
an implantable device in post-myocardial infarction car-
diogenic shock [50] did not improve outcomes in clinical
trials.

It is of note that survival at 72 hours and 4 days was
not improved in this investigation. However, animals did
not receive advanced neuroprotective treatments such as
mild therapeutic hypothermia, temperature control, or
neuroprotective drugs such as isoflurane or noble gases.
Combining the improved primary survival with the
Impella device with such treatments to improve long-
term functional outcome therefore warrants further
studies and is within the scope of future investigations
by our group.

Last, collection of survival and neurocognitive out-
come data has been constrained by early euthanasia in
cases where animals were not able to stand within
36 hours after CPR. Other concepts of care may have
helped to translate promising results from the early
post-arrest period into improved 4-day survival and
outcome.

Conclusions

Our results demonstrate that, in a clinically relevant,
large animal model of cardiac arrest and CPR, iCPR
treatment was superior to sCPR with respect to both the
ability to achieve ROSC and the ability to achieve a bet-
ter functional outcome in the early post-arrest period.
Furthermore, iCPR restored spontaneous circulation in
the majority of cases in which ROSC could not be
achieved by sCPR. These results suggest a possible role
for iCPR treatment in cardiac arrest that has, to our
knowledge, not been previously proposed. Further stud-
ies are warranted to determine the feasibility of using
this strategy in different clinical settings to evaluate its
potential in humans.
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Key messages

e iCPR is superior to sCPR in regard to ROSC and
clinical outcome in a porcine model of cardiac arrest
and CPR.

e Optimizing CPP and MPAP with iCPR improves
ROSC rates, even when the device is placed
following unsuccessful sCPR.

e Verification of correct device placement currently
requires fluoroscopy, restricting the deployment of
iCPR to a limited number of clinical settings.

e Modification of the device and procedure is required
for its use beyond the catheter laboratory.
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