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Abstract

Introduction: Experimental work provides insight into potential lung protective strategies. The objective of this
study was to evaluate markers of ventilator-induced lung injury after two different ventilation approaches: (1) a
“conventional” lung-protective strategy (volume control (VC) with low tidal volume, positive end-expiratory pressure
(PEEP) and paralysis), (2) a physiological approach with spontaneous breathing, permitting synchrony, variability and
a liberated airway. For this, we used non-invasive Neurally Adjusted Ventilatory Assist (NIV-NAVA), with the hypothesis
that liberation of upper airways and the ventilator's integration with lung protective reflexes would be equally
lung protective.

Methods: In this controlled and randomized in vivo laboratory study, 25 adult White New Zealand rabbits were
studied, including five non-ventilated control animals. The twenty animals with aspiration-induced lung injury were
randomized to ventilation with either VC (6 ml/kg, PEEP 5 cm H20, and paralysis) or NIV-NAVA for six hours (PEEP = zero
because of leaks). Markers of lung function, lung injury, vital signs and ventilator parameters were assessed.

Results: At the end of six hours of ventilation (n = 20), there were no significant differences between VC and NIV-NAVA
for vital signs, PaO2/FiO2 ratio, lung wet-to-dry ratio and broncho-alveolar Interleukin 8 (II-8). Plasma IL-8 was
higher in VC (P <0.05). Lung injury score was lower for NIV-NAVA (P = 0.03). Dynamic lung compliance recovered
after six hours in NIV-NAVA but not in VC (P <0.05). During VC, peak pressures increased from 9.2 + 24 cm H20
(hour 1) to 123+ 123 cm H20 (hour 6) (P <0.05). During NIV-NAVA, the tracheal end-expiratory pressure was similar to
the end-expiratory pressure during VC. Two animals regurgitated during NIV-NAVA, without clinical consequences, and

survived the protocol.

Conclusions: In experimental acute lung injury, NIV-NAVA is as lung-protective as VC 6 ml/kg with PEEP.

Introduction

Ventilator-induced lung injury (VILI) is a topic of utmost
importance in both the adult and infant populations. From
animal studies, it is evident that in order to minimize VILI,
lung over-distension should be avoided and positive
end-expiratory pressure (PEEP) should be used to keep
the lung from de-recruiting [1]. VILI studies in animals
generally use the same model [2-5]: experimental lung
injury is induced and then animals are randomized
to different strategies and/or modes. The protective
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ventilation strategy commonly used is a controlled mode
of low tidal volume (Vt) (usually 6 ml/Kg) with a fixed
PEEP, applied with intubation and sedation, with or
without neuromuscular paralysis.

Recent experimental studies suggest that spontaneous
breathing [6], variability of breathing pattern [7], and
proportionality [3,8] can aid in the attenuation of VILI
in intubated animals with mild early experimental lung
injury (partial arterial pressure of oxygen (PaO2) to inspired
oxygen fraction (FIO2) ratio (P/F) approximately 100 to
150). The work of Brander et al. in intubated rabbits with
hydrochloric acid (HCI)-lung injury demonstrated that
neurally adjusted ventilatory assist (NAVA) is at least as
protective against VILI as the conventional protective
ventilation strategy of volume control (VC) [3].
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Interestingly, no studies have examined the use of non-
invasive ventilation (NIV) in reducing VILI. Such an
approach could provide even greater lung protection by
allowing the naturally occurring regulation of end-expira-
tory lung volume [9] and prevention of atelectasis, as well
as avoiding the complications associated with having an
endotracheal tube in place (for example, ineffective cough,
colonization of the tube, and tracheal and glottal injury).

Based on the above, we compared VILI with two ventila-
tion approaches: (1) the conventional lung protective
strategy where Vt and PEEP are controlled (6 ml/Kg
and 5 cm H,0) and neuromuscular paralysis is used, or
(2) a physiological approach with spontaneous breathing,
variability and a liberated airway (without an imposed
Vt and without PEEP). We used NIV-NAVA for the latter
group, knowing that synchronous ventilation can be
provided in the presence of large leaks [10], both in terms
of timing and proportionality. We hypothesized that
NIV-NAVA would be equally protective as the protective
strategy in terms of VILI, because of: (i) the freedom
to choose the breathing pattern, (ii) liberation of the
upper airways, and (iii) integration of the ventilator
with lung protective reflexes. Some of the results of
this study have been previously reported in the form of
an abstract [11].

Materials and methods

The study was approved by St Michael’s Hospital Animal
Care and Use Committee. Care and handling of the
animals was in accordance with the Canadian Council
on Animal Care.

Animals

Twenty five rabbits (3.1 + 0.4 Kg) were studied (n =10 in
volume control, n=10 in NIV-NAVA, n=5 non-venti-
lated and non-injured controls). As previously described
[3,10,12,13], the ventilated animals received continuous
infusion of ketamine hydrochloride (40 mg/Kg/h), xylazine
(4 mg/Kg/h) and lactated Ringer’s solution (5 mL/Kg/h).
Blood pressure, oxygen saturation, body temperature, and
heart rate were monitored. An endotracheal tube was
placed in the trachea but below the larynx (Figure 1).
In addition, in the NIV-NAVA arm, a single nasal prong
was placed into one nostril [10].

Pressure measurements are described in Figure 1. A
Servo300 ventilator (Maquet, Sweden) was used and was
connected via tubing to the trachea in VC (Pvent), or
to the nasal prong in NIV-NAVA (Pprong). Electrical
activity of the diaphragm (EAdi) was measured as pre-
viously described [3].

Protocol
Measurements were made before acute lung injury
(Pre-ALI) and 5 minutes after (Post-ALI), and for 6 hours
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in either VC (paralyzed with 6 ml/Kg, PEEP 5 cm H,O)
or NIV-NAVA (spontaneous breathing) (Figure 2). The
method for NAVA has been previously described in
detail [13] (see Additional file 1). The NAVA level was
titrated [13-16] to allow determination of (i) maximal
diaphragm activation during zero assist, and (ii) an
adequate NAVA level. During NIV-NAVA, no effective
PEEP could be applied because of the leak and because
the prototype being used (Servo300) did not have a
dedicated NIV mode with leak compensation.

During VC mode, the initial setting for PEEP on the
ventilator was 5 cm H2O, but if necessary for hemody-
namic reasons, PEEP was lowered in 1 cm H2O steps if
mean arterial blood pressure decreased below 50 mmHg
[3]. Respiratory rate was adjusted (if necessary) based on
the arterial blood gases in the previous hour.

Acute lung injury

After the Pre-ALI phase, both groups had induction of ALI
by intratracheal instillation of HCI (pH 1.5) (1.5 mL/Kg)
[3,10], while receiving neuromuscular paralysis and con-
trolled ventilation (Vt 6 mL/Kg; PEEP 5 cm H2O; FiO,
50%). Total respiratory dynamic compliance (Cdyn, mL/cm
H20) was measured during paralysis Pre-ALI and Post-ALI
using the formula: Vt/(Ppeak-PEEP). Static compliance was
measured as Vt/(Pplat-PEEP).

Animals were then ventilated for six hours with either
VC or NIV-NAVA, and arterial blood samples were
taken hourly. All other measurements were recorded for
the last 20 minutes of each hour. At the end of the
protocol, Cdyn was re-measured for both modes.

Lung injury markers

After sacrifice, the heart-lung block was removed, the
lungs were inflated and the main left-side bronchus and
the right lower-lobe bronchus were tightly occluded.
Saline was instilled and filled the non-occluded right
lung for bronchoalveolar lavage (BAL), and was then
aspirated and immediately centrifuged and stored. The
right lower lobe was used to measure lung wet-to-dry
ratio. The remaining right lung was used for tissue IL-8.
Rabbit IL-8 was measured in BAL fluid and plasma (at
3 hours and 6 hours) using a human IL-8 ELISA kit
(Biosource International, Camarillo, CA, USA) [3]. See
Additional file 1 for the rationale of using IL-8, as well
as references [17,18].

Histology

Axial lung slices (thickness 0.5 ¢cm) were made of the
fixated lung 0.5 cm caudal of the lung hilus. The lung
slice was subsequently divided into three parts representing
dependent, intermediate and non-dependent lung areas
with a minimal margin of 3 mm in between the areas, as
well as with the lung edge. In our supine-positioned animal,
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Figure 1 Experimental set up and experimental recordings. Left panels show experimental set-up and physical placement of interfaces and
right panels show experimental recordings for each mode. Volume control (VC, top) and non-invasive ventilation-neurally adjusted ventilatory
assist (NIV-NAVA, bottom). VC setup: ventilator was connected to the endotracheal tube at the tracheostomy to measure ventilator pressure (Pvent).
NIV-NAVA setup: Ventilator was connected to the nasal prong (Pprong), where ventilator-delivered pressure was measured. Tracheal pressure (Ptr) was
also measured via a side-port at the tracheotomy. PEEP, positive end-expiratory pressure; EAdi, electrical activity of the diaphragm.
J

the dependent lung area was defined as the most dorsal
lung section, non-dependent corresponded with the ventral
lung area, and intermediate the area in between the
dependent and non-dependent lung areas [19]. The
specimens were embedded in paraffin, sectioned and
stained with hematoxylin and eosin. The analyzing path-
ologist, blinded to study group, scored the samples for
lung injury (see Additional file 1) [20].

Ventilatory variables

Analysis of EAdi and respiratory variables is described
in Additional file 1 and in references [13-16,21]. Briefly, the
EAdi waveform was quantified by its phasic component
(that is, the inspiratory change in amplitude from baseline
to peak) and the minimum EAdi, or tonic EAdi, during
exhalation. The phasic EAdi was related to the maximum
EAdi at zero assist during the NAVA titration, to obtain a
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Figure 2 Experimental protocol. Animals were randomized to be ventilated with either volume control mode (with neuromuscular paralysis, VC
group, left) or with non-invasive ventilation with neurally adjusted ventilatory assist (NIV-NAVA) and spontaneous breathing (NIV-NAVA group,
right). Animals were briefly ventilated before an acid-induced acute lung injury (Pre-ALl) and for 6 hours (Post-ALl). In both arms, dynamic lung

compliance was measured Pre-ALl, Post-ALl, and after 6 hours. PEEP, positive end-expiratory pressure.

relative inspiratory EAdi. The pressure waveforms were
also quantified by their inspiratory (delta) change during
inspiration, and the mean expiratory pressure.

Statistics

Data are presented as mean + SD or median (quartiles),
depending on whether or not the data were normally
distributed. Two-way repeated measures analysis of
variance (RM-ANOVA) was used to compare variables
over time and between modes. The Student Newman-
Keuls test was used for post hoc analysis: the ¢-test was
used to compare the IL-8 concentration in blood sam-
ples and BAL, and lung injury score (LIS). A significant
difference was defined as P <0.05. SigmaStat was used
for statistical analyses (Sigmastat, Jandel Scientific, San
Jose, CA, USA).

Results

All twenty animals survived the protocol. In the NIV-
NAVA arm, the average time for EAdi recovery after
paralysis was 21 + 7 minutes. Two animals in the NIV-
NAVA arm regurgitated half way through the 6-hour
protocol. These animals did not demonstrate any clinical
signs of aspiration (no changes in breathing pattern or
P/F ratio), and were not excluded from the analysis.

HCl-induced lung injury

After ALL the mean P/F ratio was reduced from 300 +
70 mmHg to 113 + 48 mmHg for the NIV-NAVA arm
(P <0.001), and from 282 + 108 to 146 + 81 for the VC
arm (P =0.002), and was not different between the two
groups (Figure 3A). Total respiratory dynamic compliance
was reduced significantly after ALI in both groups (by 25
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Figure 3 Partial arterial pressure of oxygen/inspired oxygen fraction (PaO,/FIO,) ratio and dynamic lung compliance after lung injury
and after 6 hours of ventilation. (A) PaO,/FIO, ratio before acute lung injury (Pre-ALl), Post-ALl, and 6 hours after ALI with non-invasive ventilation
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different from Pre-ALI.

recovered in the NIV-NAVA group, but not the VC group. Values are mean = SD. *NIV-NAVA, significantly different from Pre-ALL *VC, significantly

+16% in the NIV-NAVA group, and 27 + 17% in the VC
group, P <0.001), and were not different from each other
(Figure 3B). Absolute values for dynamic compliance are
presented in Table 1.

Six-hour protocol

After 6 hours of ventilation, the P/F ratio recovered in
both groups back to Pre-ALI values (Figure 3A). On the
other hand, dynamic compliance recovered in the NIV-
NAVA group, but did not in the VC animals (Figure 3B).
Similarly, static compliance decreased consistently through-
out the 6 hours of VC ventilation, and was significantly
lower at hour 6 compared to hour 1 (Table 1).

In VC mode (Vt=6 mL/Kg), there was a significant
increase in peak ventilator pressure from 9.2 +2.4 cm
H,O at hour 1 to 12.3 £ 12.3 cm H,O at hour 6 (P <0.05)
(Figure 4A). Also, plateau pressure had a tendency to
increase throughout the 6 hours (11.8 (10.8 to 12.6) to
12.9 (11.1 to 14.0) cm H,O) (Table 1). Inspiratory flow
during VC mode was not significantly different through-
out the protocol (Table 1).

During NIV-NAVA (spontaneous breathing), the peak
delivered pressure measured at the nasal prong was not
different between hour 1 (13.8 + 6.3 cm H,O) and hour
6 (12.3 £6.0 cm H,O) (Figure 4B). Peak inspiratory Ptr
during NIV-NAVA did not significantly change over
time (4.8 £2.9 versus 5.7 £+ 2.3 cm H,0). With the large
leak, the pressure in the trachea was 42 +6.2% of the
pressure measured at the nasal prong (range 40% to 46%
during the 6 hours of NIV-NAVA). The evolution of the
leak (or pressure transmission), is presented in Table 2
and was not significantly different over time.

The measured end-expiratory pressure during the 6 hours
of VC started at 4 + 1.2 cm H,O one hour after HCl injury,

and was slightly lower at the end of the 6 h (2.7 £ 1.5 cm
H,0), P=0.100 (Figure 4A). During NIV-NAVA, the ap-
plied extrinsic PEEP was zero. Although not significant,
there was a tendency for end-expiratory tracheal pressure
to increase (1.8 +0.8 cm H,O at hour 1 to 26+1.2 c¢cm
H,O at hour 6 (Figure 4B). Table 1 summarizes the vital
signs for both VC and NIV-NAVA groups throughout the
protocol.

During NIV-NAVA, there were no significant changes in
the inspiratory EAdi (in absolute values), nor the relative
diaphragm activation, during the 6 hours (Table 2). The
inspiratory EAdi values during the 6 hours indicated on
average, 41% de-activation of the diaphragm at the titrated
NAVA level. No significant changes in tonic EAdi were
found throughout the 6 hours, although there was a
tendency for an increase in hours 5 and 6 (Table 2). Sighs
(large neural inspirations) were intermittently observed
(range 0 to 9 per hour).

Lung injury
For the different lung regions, separately, and for the lung
as a whole, the mean lung wet-dry ratio was not signifi-
cantly different between NIV-NAVA (5.3 +0.5) and VC
(5.3 £0.3). Compared to controls, IL8 concentration in
the BAL was significantly increased for both the NIV-
NAVA and VC groups at the end of the 6 hours, but
the groups were not significantly different from each other
(Figure 5A). Compared to hour 3 (which was the first
post-ALI measurement), plasma IL-8 was significantly
lower at hour 6 for the NIV-NAVA group, but not for the
VC group (Figure 5B).

Figure 6 shows representative photomicrographs of
lungs stained with hematoxylin-eosin. Histological analysis
showed edema, hemorrhage and neutrophil infiltration at



Table 1 Timeline of vital signs and ventilator parameters

Mode Pre-ALI Post-ALI 1 hour 2 hours 3 hours 4 hours 5 hours 6 hours P-value (time) P-value (mode)
Mean BP, mmHg NIV-NAVA ~ 83° 70 79° 70 68 61 61 61 NS P <005 at Pre-ALl and 1 h
(77,88) (50,87) (73,86) (66,80) 62,77) (5875) (54,70) (50,68)
VC 67 72 72 73 65 64 56 66 NS
(64,80) (64,80) (65,77) 67,77) (57,68) (56,67) (5267) (53,70)
Heart rate, bpm NIV-NAVA 156 202" 172 171 174 179 176 178 P <005 NS
(1521690 (190212)  (153,181)  (163,193)  (170,179)  (166,183)  (160,181)  (161,190)  Post -L|
VC 150 193 * 162 172 176 179 176 174 P <005
(142,195 (178202)  (148183)  (151,185)  (166,198)  (166,183)  (160,181)  (150,196)  Post-ALl
Body temperature, °C NIV-NAVA 389 39.1 392 389 390 389 390 389 NS NS
(38739.1) (389392 (389395) (388396) (388394) (386393) (386393) (387,392)
VC 390 39.1 390 392 392 392 390 39,1 NS
(385393) (38539.2) (38839.2) (389393) (390396) (388394) (38839.1) (389-393)
SA02,% NIV-NAVA 991 91.1% % % 973 987 984 988 986 P <005 P <0.05 at Post-ALl
(983993) (75397) (957,990  (937,989) (96.5) (97.1,988)  (97,99) (97.499.1)
VC 985 92.1 9838 987 986 989 988 99.1 NS
(97499.1)  (77297)  (98994)  (98599) (974990  (982,993) (982,99.1)  (98.1,99.1)
PaC02, mmHg NIV-NAVA 552 737" 545 506 458 516 507 538 P <005 P <0.05 Post -L|
(517599) (62.8779) (428636) (473595) (40863)  (38856.1) (389,569) (32861)
VC 564 566 50.15 49 50.7 46.2 47,1 473 NS
(472579) (453632) (455557) (42,55) (40556)  (393488) (4252.1)  (386,608)
Ventilation rate per minute  NIV-NAVA 30 47% 36° 36° 32 29 37° 37° P <0.05 P <005 Post-ALl
(£7) (£15) (£8) (£9) (£7) (£6) (£24) (£25)
VC 28 26 26 26 27 27 28 28 NS
(+9) (+6) (+4) (+4) (#3) (#3) (*2) (+2)
Cdyn, mL/cm H20 NIV-NAVA 173 094" - - - - - 118% P <001 P <0.05 Pre-ALl
(+0.25) (+0.25) (+0.14)
VC 243 126" - - - - - 1.30% P <0.05
(+0.76) (033) (+0.29) vs. Pre-ALl
Cstat, mL/cm H20 VC 25 2.1% 23" 20" 19" 19" 17" 18" P<0.001 -
(252.8) (17,23) 21,27) (19,24) (1523) (1523)  (1520) (1521 All vs. Pre-ALl and 1 h
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Table 1 Timeline of vital signs and ventilator parameters (Continued)

Plateau pressure, cmH20 vC 84 19" 115" 119" 127 123" 125" 129" P <005 -
(7.290) (108126) (92,137)  (105140) (103,134) (108,143) (113,147) (11.1,140)  All vs. Pre-ALl
Inspiratory flow, mL/s VC 19.2 212 209 213 216 217 232 236 NS -

(15221.1)  (17633.1)  (15923.7) (15823.8) (160300) (20.7299) (206296) (204,31.7)

Median values (25th to75th percentile) unless otherwise indicated, by ‘. BP, blood pressure; SAO2, saturation from arterial blood gas; Cdyn dynamic compliance; PaCO2, arterial carbon dioxide; NIV-NAVA,
non-invasive NAVA; VC, volume control; AL, acute lung injury. *Within a mode, significantly different from prior to acute lung injury (Pre-ALI); vs., versus; NS, not significant. “Within a mode, significantly different
from Post-ALl. Between modes, significantly different at specific time point.

ZT4/1/81/2US1U0D/WOD WINIoY//:d1y
TTY8L ‘YLOT 240D [D2131ID *[D 13 B||qeRIIN

€1 jJo £ abed



Mirabella et al. Critical Care 2014, 18:R22
http://ccforum.com/content/18/1/R22

Page 8 of 13

251 VC

204
D = *
sa. Q, 157 H

I

. )
e = EI Peak Pvent

5

‘ ‘ End Exp P

25 NIV-NAVA

Peak Pprong

:

204
l Peak Ptr

15
104
‘ ¢ End Exp Ptr

|

0 .
Pre-ALIPost-ALI thr 2t 3hr  4hr  Shr 6hr

Timeline of protocol

Figure 4 Ventilator pressures during volume control (VC), and prong and tracheal pressure during non-invasive ventilation with
neurally adjusted ventilator assist (NIV-NAVA). (A) End-expiratory pressure (End Exp P, solid squares) and peak inspiratory pressure (above End
Exp P, open squares) during VC in pre-acute lung injury (Pr-ALl) conditions, Post-ALl, and during 6 hours of ventilation. Peak inspiratory pressures
increased during hours 5 and 6. (B) End-expiratory tracheal pressure (solid black circles), peak inspiratory tracheal pressure (gray solid circles), and
peak prong pressure (open circles) during NIV-NAVA in Pre-ALI conditions, Post-ALl, and during 6 hours of ventilation. Values are mean + SD. *VC,
significantly different from 1 h. Ptr, tracheal pressure; Pvent; ventilator pressure.

.’
O meAUlPostAll T 2w aw  am e

Timeline of protocol

the end of the 6-hour protocol. The severity of lung injury
was more pronounced in volume-controlled ventilated
animals (left panels) compared to NIV-NAVA ventilated
animals (right panels).

The lung injury score (LIS) was significantly lower in
the middle (that is, the intermediate/transition) zone of
the lung for the NIV-NAVA group, but was not different
for the independent and dependent regions (Figure 7A).
The LIS averaged over the entire lung was significantly
lower for the NIV-NAVA group (P =0.03) (Figure 7B).

Discussion

The main finding of the present study is that non-invasive
ventilation, with a synchronized and adaptable assist, was
found to be equally - if not more - protective than a low
volume, invasive ventilation mode (volume control with
6 mL/Kg and PEEP). Overall, in the NIV-NAVA arm, we
found recovery of dynamic compliance and P/F ratio after
6 hours of ventilation, a lower lung injury score, and a
decrease in plasma IL-8.

The two ventilation arms in the present study were
clearly different, and it was not possible to match the
ventilator patterns. In the VC arm we used the previously
reported lung protective strategy as the gold standard [22].
Animals were intubated and paralyzed and all ventilator

settings (target Vt, respiratory rate, and PEEP) were im-
posed and non-adaptable.

In the NIV-NAVA arm, the animals were ventilated
non-invasively, and their spontaneous breathing efforts
were assisted by a mode of ventilation synchronized and
proportional to their neural respiratory drive. With NIV-
NAVA therefore, the animals were “free to choose” their
own ventilator pressures, and respiratory rates [10]. Non-
invasive ventilation could be delivered effectively without
glottal closure [23]. The diaphragm remained active not
only during inspiration, but partially also during exhalation
(so-called tonic EAdi), possibly preventing de-recruitment
of the lungs [12].

In addition, because there was a nasal prong to deliver
the assist, the upper airways may have been free to partici-
pate in regulating end-expiratory volume, by activation
of laryngeal and pharyngeal muscles on exhalation, as
has been suggested by others [9,24]. Kosch et al. [24]
measured diaphragm activity and upper airway muscle
activity in children and concluded that “braking mecha-
nisms in infants interact with vagal reflex mechanisms
that modulate respiratory cycle timing to influence both
the dynamic maintenance of end-expiratory lung volume
and ventilation”. Measurement of the electrical activity
of the upper airway constrictor muscles (such as the

Table 2 Timeline of diaphragm electrical activity (EAdi) and pressure transmission to the trachea with non-invasive

neurally adjusted ventilator assist (NIV-NAVA)

Pre-ALI Post-ALI 1 hour 2 hours 3 hours 4 hours 5 hours 6 hours P-value (time)
EAdi peak, a.u. 221 (£106) 182 (£124) 156 (£48) 191 (6.5 180 (£73) 189 (#6.2) 21.1 (x99 173 (£80) NS
EAdi minimum, a.u. 52 (£1.7) 56 (£15) 45 (x£1.8) 49 (x£1.0) 48 (+1.2) 47 (+14) 56 (£3.7) 6.3 (£5.0) NS
Relative peak EAdi, % 786 (+482) 603 (£35.5) 526 (£16.1) 639 (£19.7) 608 (£235) 645 (+236) 71.5(£304) 61 (+354) NS
Pressure transmission 858 (£59.1) 55.7 (+51.3) 69.5 (£43.1) 72.1 (£529) 689 (+42.8) 72.1 (+432) 66.8 (+40.8) 70.2 (£379) NS

to trachea, %

Results are presented as mean (+ SD). a.u,, arbitrary units; ALl, acute lung injury; EAdi, diaphragm electrical activity; NS, not significant.
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Figure 5 Markers of lung injury for volume control (VC) and
non-invasive ventilation with neurally adjusted ventilator assist
(NIV-NAVA). (A) Values of IL-8 in bronchoalveolar lavage fluid (BAL IL8)
were significantly different from control for both VC and NIV-NAVA, but
not significantly different from each other. (B) Values of plasma IL-8 after
6 hours of NIV-NAVA were significantly lower at 6 hours of NIV-NAVA.
Values are median and 25th and 75th interquartile ranges. *NIV-NAVA,
significantly different from pre-acute lung injury (Pre-ALl). Ve significantly
different from Pre-ALL. *NIV-NAVA significantly different from 3 hours.

thyroarytenoid or posterior cricoarytenoid muscles) may
provide evidence for this in future studies.

With respect to VILL there is a consensus that the venti-
lation strategy should avoid overdistension (volutrauma,
barotrauma) and cyclic alveolar recruitment and de-recruit-
ment (atelectrauma) [1]. In contrast to the VC arm, no
PEEP could be effectively applied during NIV-NAVA
because of the leak, and the prototype being used
(Servo300) did not have a dedicated NIV mode (note
that with today’s commercially available ventilator, there is
a dedicated NIV-NAVA mode with leak compensation
that is able to deliver adequate PEEP). Despite the fact that
no external PEEP was applied, the end-expiratory pressure
measured in the trachea at the end of the NIV-NAVA
protocol was almost 3 cm H,O (Figure 4B). Although
we did not measure end-expiratory lung volume per se,
our physiological data suggest that the combination of
spontaneous breathing (and synchronized ventilation),
with the liberated upper airways may have contributed
to a reduction in atelectrauma. Several spontaneous
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breathing strategies may have contributed to this, namely
increased respiratory rate (which was higher after lung
injury), increased tonic EAdi (which had a tendency to
increase at the end of 6 hours), smaller delta pressures
generating lower shear forces, and the possible adduction
of the vocal cords during expiration (increased expiratory
resistance, not measured). Further evidence of sufficient
end-expiratory lung volume was that oxygen saturation
recovered throughout the 6 hours of NIV-NAVA (Table 1).
Given our morphometric data, the main effect of NIV-
NAVA in reducing lung injury appears to have occurred
in the transition zone between dependent and non-
dependent lung zones. This suggests that during NIV-
NAVA while the animals breathed spontaneously and
in synchrony with the ventilator, without by-passing the
upper airways with an endotracheal tube, de-recruitment
may have been minimized, leading to protection from
atelectrauma. In the VC arm, one could argue that an
initial setting of PEEP of 5 cm H2O may have been
considered low for experimental lung injury (compare
to 8 cm H2O in Brander et al. [3]), however the severity
of lung injury in that study was greater because two
rounds of intratracheal acid installation were performed.
After 3 hours of the same protective VC strategy (6 mL/
Kg), Brander et al. [3] were able to ventilate with a PEEP
setting of 5 cm H20.

Regarding overdistension, several experimental studies
have shown downregulation of the EAdi during NAVA,
preventing excessive levels of assist [12-14,25]. It was
suggested that this reflex termination of assist and down-
regulation of EAdi is a vagally mediated reflex sensitive to
lung stretch [25]. This prevention of over-assist may also
have contributed to the lung protection observed. During
non-invasive NAVA, however, it was not possible to meas-
ure tidal volume reliably (due to the leak), and therefore,
we could not compare Vt relative to the 6 mL/Kg in the
VC arm. Therefore, with respect to volutrauma/baro-
trauma and the role of transpulmonary pressure, the
amount of assist delivered during the two types of ventila-
tion should be addressed. The peak ventilator pressures
delivered during VC reached about 12 cm H,O at hour 5.
The peak inspiratory tracheal pressures during NIV-
NAVA were in the range of 6 to 7 cm H,O. As the animals
in the NIV-NAVA arm were spontaneously breathing,
their inspiratory effort (not measured) also contributed to
the transpulmonary pressure. Based on our previous work
in the same animal model [10], the esophageal pressure-
swings during inspiration were about -3 c¢cm H,O.
Summed with the mean expiratory pressure in the tra-
chea of 3 cm H,O, the transpulmonary pressure could
be estimated to be approximately 12 to 13 cm H,O, very
similar to the VC arm.

Another approach to estimating how much assist was
delivered was by examining the EAdi values. During
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NIV-NAVA

hemorrhage and neutrophil infiltration.

Figure 6 Representative photomicrographs of lungs stained with hematoxylin-eosin. Left panels A and C: animals ventilated with
volume-controlled ventilation (VC); right panels B and D: animals ventilated with non-invasive ventilation with neurally adjusted ventilator assist
(NIV-NAVA). (A and B) Overview of lungs sections at 200x magnification. (C and D) Close-up of alveoli (400x magnification) showing edema,

NIV-NAVA, the NAVA level was determined based on a
titration method described previously [13] (at the begin-
ning of the titration procedure, a period of zero NAVA
level is used to obtain the highest diaphragm activation).
In the present study, the animals were breathing at 60%
of their maximum diaphragm activation (in other words
they were de-activated, or unloaded by 40%).

Throughout the 6 hours of VC ventilation, the peak
pressure required to reach 6 mL/Kg increased signifi-
cantly at hours 5 and 6, indicating worsened respiratory
mechanics over time, in accordance with the results of
Brander et al. [3]. A significant reduction in static compli-
ance was also observed during the 6-hour VC protocol,
indicating perhaps a stiffer lung during VC ventilation. It
was not possible to measure static compliance during the
NIV-NAVA arm of the protocol since the animals were
spontaneously breathing. We did, however, re-paralyze
the animals at the end of the 6 hours to measure their
compliance.

Dynamic compliance recovered in the NIV-NAVA group,
perhaps because they were permitted to adopt a spon-
taneous and variable breathing pattern, which allowed
recruitment of the lung both on inspiration and expir-
ation. Sighs were observed intermittently. Coisel et al. [26]
have suggested that the increased variability in breathing
pattern observed with NAVA may lead to improvements
in PaOQ.

Patient-ventilator asynchrony is one of the main reasons
non-invasive ventilation fails clinically [27]. In the present
study, both ventilation arms were similar in that “fighting
of the ventilator” did not occur. In the VC arm, spontan-
eous breathing activity was not present, whereas during
NIV-NAVA, synchrony is achieved, regardless of leaks
[10,28,29].

The present study has some of limitations. First, in this
study, we compared two conditions of mechanical venti-
lation, where four parameters change: (i) invasive versus
non-invasive, (ii) neuromuscular paralysis versus spon-
taneous breathing, (iii) fixed volume delivery versus vari-
able and proportional assist, and (iv) applied PEEP versus
zero PEEP. This actually is the first long-term study
(6 hours) using NIV-NAVA under very challenging condi-
tions (hypoxemic respiratory failure, large leak, high
respiratory rate, and no capability of applying PEEP).
As an initial validation, we chose a direct comparison
to a standard experimental lung protective mode (VC).
Of course, future studies could aim more specifically at
evaluating the individual influences (paralysis, propor-
tionality, synchrony, PEED, et cetera, on VILI).

Second, one could critique that we did not use a
standard mode of NIV, such as NIV-PSV (pressure sup-
port ventilation (PSV)), for comparison to NIV-NAVA.
Previous work in our laboratory has shown the difficulties
of applying NIV-PSV in this model [30]. Because of the
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Figure 7 Lung injury score for volume control (VC) animals and
non-invasive ventilation with neurally adjusted ventilator assist
(NIV-NVA) animals. (A) During NIV-NAVA (black bars), the lung
injury score for the middle portion of the lung showed significantly
lower values than the VC group (white bars). (B) Average lung injury
score was lower for NIV-NAVA (solid black bar) than the VC arm
(white bar). Values are mean + SD.

large leak, asynchrony can be anticipated during NIV-PSV,
adding an additional factor to consider when evaluating
VILL. Also, we have demonstrated in conscious animals
that the upper airways fight the ventilator on inspiration
(glottal closure) during NIV-PSV, a phenomena that was
not observed during NIV-NAVA [23].

It cannot be neglected that two animals in the NIV-
NAVA arm regurgitated. Despite there being no evidence
for aspiration in our study (that is, no changes in breath-
ing pattern or P/F ratio), the issue of airway protection
and the risk of aspiration should always be considered
when applying all modes of NIV (not just NIV-NAVA).

Since this was an experimental study, we do not know
if the results of the present study have any relevance to
human patients. The use of NIV in patients with ALI
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and acute respiratory distress syndrome (ARDS) remains
controversial, with studies showing a high failure rate of
NIV in this group [31]. However, when implemented
early, the use of NIV for ALI has been shown to be safe
and to improve clinical outcome [32].

Conscious patients undergoing NIV-NAVA may or may
not tolerate an EAdi catheter. This certainly depends on
the patient’s status, the clinical setting and practice of
feeding during NIV, and the interface being used, amongst
others. Smaller EAdi catheters (8-F) are commercially
available for adult patients undergoing NIV who do not
require feeding. In addition, at the moment, the authors
do not suggest the clinical use of zero PEEP in humans
with hypoxemic respiratory failure during non-invasive
ventilation. This needs to be addressed in a future clin-
ical study.

Conclusions

In experimental animals with ALI, NIV-NAVA is equally
as lung-protective, or better, than VC with 6 mL/Kg with
PEEP. Spontaneous breathing and upper airway liberation
may have contributed to adequate lung protection.

Key messages

e NAVA is particularly promising for NIV, because it
is able to provide synchronized assist and efficiently
unload respiratory muscles even in the presence of
large air leaks

e In an animal model of HCI aspiration-induced ALI we
have shown that NIV-NAVA is at least as protective
as the standard lung-protective invasive ventilation
mode (VC ventilation with PEEP and low Vt)

e The combination of (i) freedom to choose breathing
pattern, (ii) liberated upper airways, (iii) integration
with vagally mediated lung-protective reflexes may
have contributed to the adequate lung protection
observed during NIV-NAVA in this experimental
model.

Additional file

Additional file 1: Materials and methods (details). This is a file with
additional details about the material and methods.
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